EJERCICIO PRÁCTICO

1. DATOS DE PARTIDA:

ABASTECIMIENTO:

Población censada: 6.000 habitantes.

Población estacional: 2.000 habitantes.

Dotación de suministro: 250 litros por habitante y día.

DEPURACIÓN:

PARÁMETRO	ENTRADA EDAR	SALIDA EDAR	UD
DBO5	240	25	mg/l
DQO	500	125	mg/l
SST	300	35	mg/l
NtK	60	15	mg/l
Pt	15	2	mg/l

2. CUESTIONES A RESPONDER

A partir de los datos de partida y del perfil esquemático facilitado en hoja adjunta se pretende diseñar el abastecimiento y la depuración de una población. En concreto, se plantean las siguientes cuestiones:

ABASTECIMIENTO:

a) Definir la impulsión de agua bruta desde la toma en el río hasta la ETAP: equipo de bombeo adecuado; diámetro de la tubería suponiendo fundición dúctil; pérdida de carga lineal según Manning (se despreciarán las pérdidas localizadas); potencia de la/s bomba/s necesarias considerando un rendimiento del sistema del 70 %. Relacionar el resto de elementos necesarios de la impulsión. (4 PUNTOS).

- b) Dibujar el diagrama de procesos de la ETAP y definir brevemente los procesos unitarios empleados y los reactivos a emplear para la potabilización convencional del agua. (5 PUNTOS).
- c) Dimensionar los filtros de la ETAP, suponiendo una jornada de trabajo de 8 horas. (3 PUNTOS).

DEPURACIÓN.

- d) Dibujar un diagrama de procesos para la depuración de las aguas residuales generadas por la población mediante el sistema de aireación prolongada, describiendo brevemente cada elemento y proceso. (5 PUNTOS).
- e) Dimensionar la decantación secundaria. (3 PUNTOS)

(Al final de cada cuestión se indica entre paréntesis su puntuación máxima sobre 20 puntos).

3. ANEJO DE DOCUMENTACIÓN

ABASTECIMIENTO: Cuestión a) (Impulsión).

FÓRMULA DE MANNING

$$v = Rh^{2/3} \frac{l^{1/2}}{n}$$

Donde:

V es la velocidad en m/s Rh es el radio hidráulico I es la perdida de carga en m/m n es el coeficiente de rugosidad (ver tabla)

COEFICIEN	IE DE KUGUSIDAD	DE MANNING DE MA	TERIALES	
Material	l n Material		n	
Plástico (PE, PVC)	0,006-0,010	Fundición	0,012-0,015	
Poli�ster reforzado con fibra de vidrio	0,009	Hormigón	0,012-0,017	
Acero	0,010-0,011	Hormigón revestido con gunita	0,016-0,022	
Hierro galvanizado	0,015-0,017	Revestimiento bituminoso	0,013-0,016	

• POTENCIA DE UNA BOMBA

 $P = \gamma \cdot Q \cdot H / \mu$

Donde:

P es la potencia en vatios γ es el peso específico del fluido en N/m3. Q es el caudal a bombear en m3/s. H es la altura dinámica en metros. μ es el rendimiento del sistema

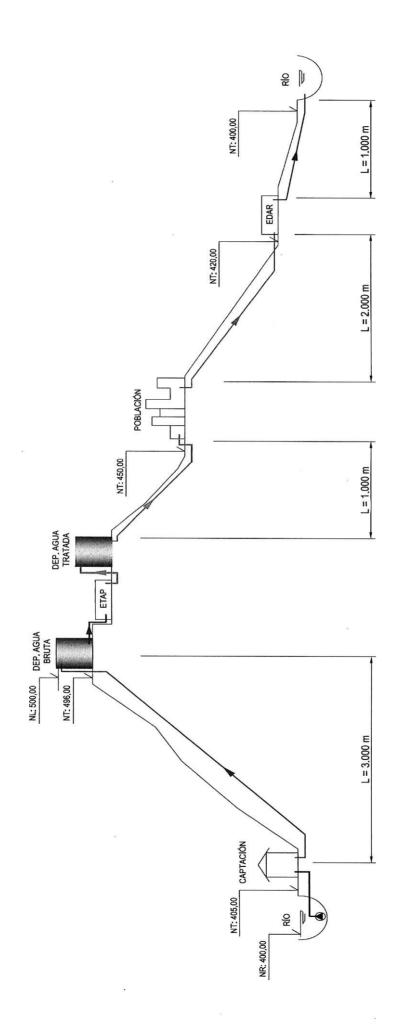
• DISCRIMINACIÓN HORARIA CONSIDERADA EN BOMBEO:

	DE	А
HORAS VALLE	22:00	08:00
HORAS PUNTA	08:00	22:00

• RELACIÓN DIÁMETROS NOMINALES FUNDICIÓN DUCTIL

Diámetro nominal	Diámetro exterior	Espesor paredes en K9	Peso por metro	Peso total
80	98	6	12,2	87
100	118	6	15,1	107
125	144	6	18,9	135
150	170	6	22,8	163
200	222	6,3	30.6	219
250	274	6,8	40,2	286
300	326	7,2	50,8	360
350	378	7,7	63,2	476
400	429	8,1	75,5	566
450	480	8,6	89,8	669
500	532	9	104,3	775
600	635	9,9	137,3	1009
700	738	10,8	173,9	1043,4
800	842	11,7	215,2	1594
900	945	12,6	260,2	1917
1000	1048	, 13,5	309,3	2269
1100	1152	14,4	262,6	2651
1200	1255	15,3	420,1	3060
1400	1462	17,1	547,2	4090
1500	1565	18	616,5	4582
1600	1668	18,9	690,3	5120

 VELOCIDAD MÁXIMA DEL AGUA RECOMENDADA EN LA TUBERIA DE FUNDICIÓN DÚCTIL EN FUNCIÓN DEL DIÁMETRO INTERIOR (ID, en mm):


ID < 300 v=1,5 m/s $300 \le ID \le 800$ v=2 m/s 800 < ID v=2,5 m/s

ABASTECIMIENTO: Cuestión c) (Filtración):

- ✓ Velocidad de filtración: menor o igual que 6 m/h con todos los filtros en servicio y menor o igual que 8 m/h con un filtro en lavado.
- √ Número de filtros ≥ 3

DEPURACIÓN Cuestión e) (Decantador secundario):

- ✓ Retorno de abastecimiento del 80 %.
- ✓ Coeficiente de caudal punta = 2
- √ Velocidad ascensional a caudal punta ≤ 1,0 m/h.
- ✓ Tiempo de retención ≥ 4 h a caudal medio.
- ✓ Calado mínimo ≥ 3 m.

A 10